Algebraic Cycles and Motivic Iterated Integrals Ii

نویسنده

  • AMIR JAFARI
چکیده

This is a sequel to [FJ]. It will give a more natural framework for constructing elements in the Hopf algebra χF of framed mixed Tate motives according to Bloch and Křiž [BK]. This framework allows us to extend the results of [FJ] to interpret all multiple zeta values (including the divergent ones) and the multiple polylogarithms in one variable as elements of χF . It implies that the pro-unipotent completion of the torsor of paths on P − {0, 1,∞}, is a mixed Tate motive in the sense of [BK]. Also It allows us to interpret the multiple logarithm Li1,...,1(z1, . . . , zn) as an element of χF as long as the products of consecutive zi’s are not 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterated Integrals and Algebraic Cycles: Examples and Prospects

The goal of this paper is to produce evidence for a connection between the work of Kuo-Tsai Chen on iterated integrals and de Rham homotopy theory on the one hand, and the work of Wei-Liang Chow on algebraic cycles on the other. Evidence for such a profound link has been emerging steadily since the early 1980s when Carlson, Clemens and Morgan [13] and Bruno Harris [40] gave examples where the p...

متن کامل

Galois symmetries of fundamental groupoids

We give a simple proof of the formula for the coproduct ∆ in the Hopf algebra of motivic iterated integrals on the affine line. We show that it encodes the group law in the group of automorphisms of certain non commutative variety. We relate the coproduct ∆ with the coproduct in the Hopf algebra of decorated rooted planar trivalent trees defined in chapter 4 – a version of the one defined by Co...

متن کامل

Galois symmetries of fundamental groupoids and noncommutative geometry

We define a Hopf algebra of motivic iterated integrals on the line and prove an explicit formula for the coproduct ∆ in this Hopf algebra. We show that this formula encodes the group law of the automorphism group of a certain noncommutative variety. We relate the coproduct ∆ with the coproduct in the Hopf algebra of decorated rooted plane trivalent trees, which is a plane decorated version of t...

متن کامل

On Motivic Principal Value Integrals

Inspired by p-adic (and real) principal value integrals, we introduce motivic principal value integrals associated to multi-valued rational differential forms on smooth algebraic varieties. We investigate the natural question whether (for complete varieties) this notion is a birational invariant. The answer seems to be related to the dichotomy of the Minimal Model Program.

متن کامل

Renormalization and Motivic Galois Theory

We investigate the nature of divergences in quantum field theory, showing that they are organized in the structure of a certain “ motivic Galois group” U∗, which is uniquely determined and universal with respect to the set of physical theories. The renormalization group can be identified canonically with a one parameter subgroup of U. The group U arises through a Riemann–Hilbert correspondence....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008